```
# -*- coding: utf-8 -*-
Created on Thu Jun 16 20:57:24 2022
@author: Anne
#Etude de la réaction de synthèse de l'ammoniac : influence de T et P
#Importation des biblothèques
import numpy as np
import matplotlib.pyplot as plt
pl t. cl f()
                 #Nettoyage figure précédente
fig=plt. figure(figsize=(6, 6))
                                 #Création nouvelle figure
ax=fi g. add_subpl ot (111)
pl t. gri d(True)
                # quadrillage
#Ti tre et légendes
plt.title("Synthèse NH3 : Influence de T sur le taux d'avancement de la
réaction")
#On travaillera pour une gamme de température de 300 à 600 K => gamme des
absci sses
ax. set_xlim()
#Un taux d'avancement est forcément compris entre 0 et 1 => gamme des
ordonnées
ax. set_ylim()
# Etiquettes des axes :
plt.ylabel ("taux d'avancement à l'équilibre")
plt.xlabel("température (K)")
#coefficients stoechiométriques de la réaction (valeurs absolues)
c_N2, c_H2, c_NH3=
#Les conditions initiales sont stoechiométriques dans cette étude , mais on
prévoit éventuellement de pouvoir étudier des conditions NON
stoechiométriques : Voir partie détermination du réactif limitant.
no_N2=
no_H2=
no_NH3=
#Li ste des pressions étudiées -> autant de courbes
LP=[0. 1, 1, 10, 20, 50, 100, 200]
#Bornes de la gamme de températures étudiées ( -> abscisses ). On utilisera
un range entre 2 valeurs, avec un pas de 1, poour parcourir toutes les
températures de 300 à 600 K, comme prévu à l'axe de abscisses. Ne pas oublier
que le dernier terme n'est pas étudié.
T_mi n=
T_max=
#Caractéristiques thermodynamiques de la réaction en kJ/mol pour DrH° (H) et
J/K/mol pour DrS° (S)
H=-92.4
           #réaction exothermique
           #réaction qui crée de l'ordre
S = -199
```

```
#On se propose de calculer un taux d'avancement = avancement / avancement max
# Or l'avancement max est donné par la disparition du réactif limitant.
Détermination du réactif limitant, de l'avancement maximal ( nécessaire si on
n'est plus dans les conditions stoechiométriques )
#On initialise la valeur de x_max (avancement maximal) à la valeur minimale
possible soit 0.
x max=0
#On calcule x_max si N2 est limitant :
x_max_N2=
#On calcule x_max si H2 est limitant :
#On les compare pour retenir le plus petit des 2 :
if x_max_N2<=x_max_H2:</pre>
    x_max=
el se:
    x_max=
#Création de 2 boucles imbriquées: à une pression donnée ( 1° boucle ), pour
une série de T variable d'abscisses (2^{\circ} boucle) on calcule K^{\circ}(T) et on
résoud la relation à l'équilibre K^{\circ}(T) = Q, qui donne l'avancement à T. On
change de pression ( en utilisant la 1° boucle ) pour recommencer un nouveau
tracé à une autre pression, dans la liste des pressions choisies.
#Demarrage de la première boucle, pour chaque valeur de P dans la liste
arbitrairement choisie, donc grâce à un "for Pin ...":
for P in
#A chaque pression, on va tracer une courbe taux d'avancement ( à calculer)
fonction de la température ( qui change K^{\circ}(T) ) =>
# préparation liste des abscisses températures et des ordonnées taux
d'avancement, remise à 0 à chaque nouvelle Pression => nouvelle courbe. On
définit des listes VIDES de températures (abscisse ) et taux d'avancement
(ordonnée)
    Absci sses_T=
    Ordonnees taux=
#Demarrage de la deuxième boucle : à chaque P, pour chaque valeur de T (
"for T in range () "), il faudra calculer la constante d'équilibre valide à
cette température
    for # Attention T_{max} exclus, calcul de K^{\circ}(T)
    #Définition de la fontion f équation K(T)-Q qu'on résoudra = 0
    #Ne pas Ia laisser sous forme de Ia fraction K-n(x)/d(x) car pb de d(x)=0
(?????)
        def f(x):
            return
```

#Résolution par dichotomie de l'équation, à une pression P en cours de la 1° boucle, à la température en cours T dans la 2° boucle.

#On cherche l'avancment dans un segment donnée, dont les les valeurs bornes sont 0 (réaction qui n'avance pas) et l'avancement maximal fixé par le réactif limitant ;

#la dichotomie rétrécit l'intervalle jusqu'à une limite qu'on se choisit arbitrairement, qui donne la "précision" du résultat : 10^-5 est courant, permet des calculs rapides. Pas < 10^-16

#On étudie d'abord le cas où il existe une solution

#On définit 2 bornes qui seront amenées à varier au fur et à mesure de la dichotomie, mais dont les valeurs initiales sont celles de l'intervalle d'étude choisi au départ.

La boucle de dichotomie doit tourner tant que (=> while) l'intervalle [u, v] est plus grand que la limite choisi :

while:: # On crée une nouvelle borne possible au Milieu de l'intervalle, valeur m m=

#On étudie dans quel demi intervalle se trouve la solution, par un if : si le produit borne inférieure / milieu est négatif, alors la solution est dans cet intervalle => on n'étudiera que cet intervalle moitié dans la suite : la borne supérieure devient m. Sinon, c'est que la solution est dans l'autre moitié de l'intervalle : c'est la borne inférieure qui devient m.

#si
$$<=0$$
 => borne sup = m
else:
#si > 0 => borne inf = m

#La boucle s'arrêtera quand l'intervalle d'étude atteint la limite choisie : m est alors la solution de l'équation, soit dans notre cas, l'avancement : on peut calculer le taux d'avancement à l'aide de cette valeur de m, à la fin de ce "while" :

#Incrémentation des points, abscisses, ordonnées. On vient de finir UN calcul, à une température T, qu'il faut mettre comme n ième terme des abscisses, associé au n ième terme des ordonnées (même numéro d'ordre)

#Ne pas oublier le cas(impossible en réalité, sauf errreur grave de votre part dans le choix de l'intervalle...), où il n'y aurait pas de solution En principe, ce else, indentation à la hauteur du 1° if sera inutile! else:

```
print ("pas de solution")
```

#La 2° boucle, à la même pression, va repartir pour la tempértaure suivante. #quand l'ensemble des temératures aura été étudié, on aura notre collection d'abscisses et d'ordonnées associées, à la première pression P de la première boucle : on peut faire tracer la courbe (indentation au niveau du "for des T")

#Représentation graphique : prevoir une étiquette par "label" pour chaque courbe tracée à une pression donnée : rappel plt.plot(liste d'abscisses, liste-même longueur- d'ordonnées, label=...). Ne pas oublier de dire d'afficher les légendes (dont titre, étiquettes, etc..., par plt.legend())

plt.		
plt.		

#Le programme repart au ni veau du 1° "for des P", boucle des pressions, et va donc créer un graphe par pression. Quand cette première boucle sera achevée, on demande de montrer TOUTES les courbes (1 par valeur de P) gardées en mémoire par plt. show() .

#Indentation primaire, fin du programme

pl t.